Impaired hematopoiesis in paroxysmal nocturnal hemoglobinuria/aplastic anemia is not associated with a selective proliferative defect in the glycosylphosphatidylinositol-anchored protein-deficient clone.

نویسندگان

  • J P Maciejewski
  • E M Sloand
  • T Sato
  • S Anderson
  • N S Young
چکیده

Paroxysmal nocturnal hemoglobinuria (PNH) results from somatic mutations in the PIG-A gene, leading to poor presentation of glycosylphosphatidylinositol (GPI)-anchored surface proteins. PNH frequently occurs in association with suppressed hematopoiesis, including frank aplastic anemia (AA). The relationship between GPI-anchored protein expression and bone marrow (BM) failure is unknown. To assess the hematopoietic defect in PNH, the numbers of CD34+ cells, committed progenitors (primary colony-forming cells [CFCs]), and long-term culture-initiating cells (LTC-ICs; a stem cell surrogate) were measured in BM and peripheral blood (PB) of patients with PNH/AA syndrome or patients with predominantly hemolytic PNH. LTC-IC numbers were extrapolated from secondary CFC numbers after 5 weeks of culture, and clonogenicity of LTC-ICs was determined by limiting dilution assays. When compared with normal volunteers (n = 13), PNH patients (n = 14) showed a 4.7-fold decrease in CD34+ cells and an 8.2-fold decrease in CFCs. LTC-ICs in BM and in PB were decreased 7.3-fold and 50-fold, respectively. Purified CD34+ cells from PNH patients had markedly lower clonogenicity in both primary colony cultures and in the LTC-IC assays. As expected, GPI-anchored proteins were decreased on PB cells of PNH patients. On average, 23% of monocytes were deficient in CD14, and 47% of granulocytes and 58% of platelets lacked CD16 and CD55, respectively. In PNH BM, 27% of CD34+ cells showed abnormal GPI-anchored protein expression when assessed by CD59 expression. To directly measure the colony-forming ability of GPI-anchored protein-deficient CD34+ cells, we separated CD34+ cells from PNH patients for the GPI+ and GPI-phenotype; CD59 expression was chosen as a marker of the PNH phenotype based on high and homogeneous expression on fluorescent staining. CD34+ CD59+ and CD34+ CD59-cells from PNH/AA patients showed similarly impaired primary and secondary clonogeneic efficiency. The progeny derived from CD34+ CD59- cells were both CD59- and CD55-. A very small population of CD34+ CD59- cells was also detected in some normal volunteers; after sorting, these CD34+ CD59- cells formed normal numbers of colonies, but their progeny showed lower CD59 levels. Our results are consistent with the existence of PIG-A-deficient clones in some normal individuals. In PNH/AA, progenitor and stem cells are decreased in number and function, but the proliferation in vitro is affected similarly in GPI-protein-deficient clones and in phenotypically normal cells. As measured in the in vitro assays, expansion of PIG-A- clones appears not be caused by an intrinsic growth advantage of cells with the PNH phenotype.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The molecular basis for paroxysmal nocturnal hemoglobinuria.

Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired clonal disease characterized by chronic intravascular hemolysis, cytopenia due to bone marrow failure and increased tendency to thrombosis. All patients with PNH studied so far have a somatic mutation in an X-linked gene, called PIG-A (phosphatidyl inositol glycan complementation group A), which encodes for a protein involved in the biosy...

متن کامل

Paroxysmal nocturnal hemoglobinuria clones in severe aplastic anemia patients treated with horse anti-thymocyte globulin plus cyclosporine.

BACKGROUND Clones of glycosylphosphatidylinositol-anchor protein-deficient cells are characteristic in paroxysmal nocturnal hemoglobinuria and are present in about 40-50% of patients with severe aplastic anemia. Flow cytometry has allowed for sensitive and precise measurement of glycosylphosphatidylinositol-anchor protein-deficient red blood cells and neutrophils in severe aplastic anemia. DE...

متن کامل

Detection of paroxysmal nocturnal hemoglobinuria clones in patients with myelodysplastic syndromes and related bone marrow diseases, with emphasis on diagnostic pitfalls and caveats.

BACKGROUND The presence of paroxysmal nocturnal hemoglobinuria clones in the setting of aplastic anemia or myelodysplastic syndrome has been shown to have prognostic and therapeutic implications. However, the status of paroxysmal nocturnal hemoglobinuria clones in various categories of myelodysplastic syndrome and in other bone marrow disorders is not well-studied. DESIGN AND METHODS By using...

متن کامل

The small population of PIG-A mutant cells in myelodysplastic syndromes do not arise from multipotent hematopoietic stem cells.

BACKGROUND Patients with paroxysmal nocturnal hemoglobinuria harbor clonal glycosylphosphatidylinositol-anchor deficient cells arising from a multipotent hematopoietic stem cell acquiring a PIG-A mutation. Many patients with aplastic anemia and myelodysplastic syndromes also harbor small populations of glycosylphosphatidylinositol-anchor deficient cells. Patients with aplastic anemia often evol...

متن کامل

Response of Paroxysmal Nocturnal Hemoglobinuria Clone with Aplastic Anemia to Rituximab

Paroxysmal nocturnal hemoglobinuria is caused by expansion of a hematopoietic stem cell clone with an acquired somatic mutation in the PIG-A gene. This mutation aborts the synthesis and expression of the glycosylphosphatidylinositol anchor proteins CD55 and CD59 on the surface of blood cells, thereby making them more susceptible to complement-mediated damage. A spectrum of disorders occurs in P...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Blood

دوره 89 4  شماره 

صفحات  -

تاریخ انتشار 1997